"It's Just Matrix Multiplication" Notation for Weaving
 Lea Albaugh
 (@doridoidea)

Hugo Weaving

There are some indications that weaving was already known in the Paleolithic era, as early as 27,000 years ago. An indistinct textile impression has been found at the Dolní Věstonice site. ${ }^{[11]}$ According to the find, the weavers of Upper Palaeolithic were manufacturing a variety of cordage types, produced plaited basketry and sophisticated twined and plain woven cloth. The artifacts include imprints in clay and burned remnants of cloth. ${ }^{[12]}$

The oldest known textiles found in the Americas are remnants of six finely woven textiles and cordage found in Guitarrero Cave, Peru. The weavings, made from plant fibres, are dated between 10100 and 9080 BCE. ${ }^{[13]}$

$\leftarrow \rightarrow \mathrm{C}$
G elrond age - Google Search
θ
(textiles-lab Secure https://www.google.com/search?q=elrond+age\&oq=elrond. ω \oplus [Show a DAT file (D) Pinterest Google Scholar " Other Bookmarks
elrond age

All News Images Shopping Videos More Settings Tools
About 613,000 results (0.49 seconds)
Elrond / Ages
6,000 years

Elrond was the son of Eärendil and Elwing, and a great-grandson of Lúthien, born in Beleriand in the First Age, making him well over 6,000 years old by the time of the events described in The Lord of the Rings. Elrond's twin brother was Elros Tar-Minyatur, the first High King of Númenor.

Elrond - Wikipedia

https://en.wikipedia.org/wiki/Elrond

There are some indications that weaving was already known in the Paleolithic era, as early as 27,000 years ago. An indistinct textile impression has been found at the Dolní Věstonice site. ${ }^{[11]}$ According to the find, the weavers of Upper Palaeolithic were manufacturing a variety of cordage types, produced plaited basketry and sophisticated twined and plain woven cloth. The artifacts include imprints in clay and burned remnants of cloth. ${ }^{[12]}$

The oldest known textiles found in the Americas are remnants of six finely woven textiles and cordage found in Guitarrero Cave, Peru. The weavings, made from plant fibres, are dated between 10100 and 9080 BCE. ${ }^{[13]}$

what even is a loom

a weaving draft ("2x2 twill weave")

$$
4
$$

$$
42
$$

tieup

tieup

Essence of	1	$\int_{1 \mathrm{vs} \cdot\left[\begin{array}{l} 1 \\ 2 \\ 9: 52 \end{array}\right]}^{\text {Vectors }}$	3BLUE1BROWN SERIES S1-E1 Vectors, what even are they? \| Essence of linear algebra, chapter 1 3Blue1Brown
aloebra. - PLAY ALL	2		3BLUE1BROWN SERIES S1 •E2 Linear combinations, span, and basis vectors \| Essence of linear algebra, chapter 2 3Blue1Brown
Essence of linear algebra	3		3BLUE1BROWN SERIES S1•E3 Linear transformations and matrices \| Essence of linear algebra, chapter 3 3Blue1Brown
14 videos - $3,830,427$ views • Last updated on Aug 1, 2018 $\equiv+$	4	$\begin{aligned} & \text { Matrix } \\ & \text { multaprication } \\ & \text { (it }{ }_{\text {10:04 }} \end{aligned}$	3BLUE1BROWN SERIES S1•E4 Matrix multiplication as composition \| Essence of linear algebra, chapter 4 3Blue1Brown
A geometric understanding of matrices, determinants, eigen-stuffs and more. 3Blue1Brown SUBSCRIBE	5		3BLUE1BROWN SERIES S1•E5 Three-dimensional linear transformations \| Essence of linear algebra, chapter 5 3Blue1Brown
	6		3BLUE1BROWN SERIES S1-E6 The determinant \| Essence of linear algebra, chapter 6 3Blue1Brown
	7	Inverse matrices Rank Null spriz12:09	3BLUE1BROWN SERIES S1•E7 Inverse matrices, column space and null space \| Essence of linear algebra, chapter 7 3Blue1Brown

Grant Sanderson, "3blue1brown"

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
B=\left[\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right]
\end{gathered}
$$

$A \times B=$
$\left[\begin{array}{lll}10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18\end{array}\right]$
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

$A \times B=$

$\left[\begin{array}{lll}10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18\end{array}\right]$
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right][$
I

$A \times B=$

$$
\begin{gathered}
{\left[\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[{ }^{(1 \times 10)}\right.}
\end{gathered}
$$

$A \times B=$

$$
\begin{gathered}
{\left[\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]}
\end{gathered}\left[\begin{array}{l}
10+(2 \times 13)
\end{array}\right]
$$

$A \times B=$

$$
\begin{gathered}
{\left[\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
10+26+(3 \times 16) \\
\end{array}\right]}
\end{gathered}
$$

$A \times B=$

$\left[\begin{array}{lll}10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18\end{array}\right]$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
84 \\
\end{array}\right.
$$

$A \times B=$

$$
\begin{gathered}
{\left[\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{ccc}
84 & 90 & 96 \\
201 & 216 & 231 \\
318 & 342 & 366
\end{array}\right]}
\end{gathered}
$$

threading

tieup

tieup

tieup

threading

threading

frames per time step

threading

threading ("straight draw")

tieup
treadling
("straight treadling")

unique pattern rows = combinations of frames available (minus the useless ones)

"network drafting"

the original 1938 network drafting monograph: Brandon and Guiguet's Méthode des Initiales: Un aspect mathématique du tissage à lames

Olivier Masson \& Francois Roussel, 1988: Shaft Weaving and Graph Design

Anne Wells, 2000:
"Weavers Notes \& Guide" to Masson \& Roussel

Alice Schlein, 1994:
Network Drafting:
An Introduction

"any cloth structure which can be woven on an initial threading can also be woven on a threading plotted on its associated network."

"any cloth structure which can be woven on an initial threading can also be woven on a threading plotted on its associated network."

Schlein, page 46

Schlein, page 38

9. Threading from fig. 8 woven with an advancing twill treadling and twill tie-up.

Schlein, page 37

Everyone gets a loom!

lealbaugh.github.io/little-loom/

lealbaugh.github.io/little-loom/

lealbaugh.github.io/little-loom/

Warp Lifting Plan of Weaving Calculated with Matrices
By Tadashi Fujita, Member, TMs,

Shiga Prefectural Junior College, Hikone, Shiga Pref.

1. Introduction

Attempts to systematize the structural designs of weaving mathematically have been made by T. Renaud [1], L. Lejeune and J. Soroge $[2]$, M. Tanaka [3], H.
Tsukiyama $[4]$, and T. Broggi $[5]$. Their works are all interesting as the basis of the theoretical development of the weaving designs.
In the conventional warp lifting plan, weaving
designs are filled with marks in the blank spaces of designs are filled with marks in the blank spaces of
design papers, the drawn-in draft and the treadling design papers, the drawn-in draft and the treading
are written down, and then the cording plan is built by tracing the marks of the designs, drawn-in draft
and treading. These procedures, however, are apt to cause
errors if the design is complicated. The author has developed a system to express the designs and the weaving plan by matrices to clarify the relation between them by the multiplication of these matrices, and to explain the characteristics of the lifting plan mathematically.
2. Relation Between Design and Cording Plan
2.1. Calculation of cording plan

Fig. 1 indicates the lifting plan of $\frac{2}{2}$ broken twill. Fig. 1 indicates the lifting plan of $\frac{2}{2}$ broken twill.
The weaving design is shown by A , the drawn-in by D . B , the treading by C and the cording plan in Assuming that $a_{t v}$ denotes the warp up mark whose elements are $a_{\text {a }}$ That is to say:

[^0]

[^0]:

 Fig. 1 Lifting plan of $\frac{2}{2}$ broken twill

 a 0 an 0 or
 The element 0 of this matrix represents the weft
 p and the element $a_{t u}$ the warp up. The sub.index k of the element represents the number of warp yarns counted from the left in one repeat; ; i, the number
 of weft yarns counted in reverse picking order. of weft yarns countee
 Assume that the points $■$ which warp yarn pa through the mail of heald at B are represented b_{x} Then, the matrix of the drawn-in draft whose elements are $b_{t x}$ is as follows:

 $$
 \left(\begin{array}{cccc}
 0 & 0 & 0 & b_{14} \tag{2}\\
 0 & b_{22} & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 b_{41} & 0 & b_{33} & 0 \\
 0
 \end{array}\right.
 $$

 In this matrix, the sub-index i of the element is
 the heald number; k, the warp number and mail the heald number; k, the war
 number having the same warp.
 Assume that the mark \mathbb{C} in. C is represented by
 nes the element C_{k} which indicates the matrix of tre

